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A numerical study of the generation of Tollmien-Schlichting (T-S) waves due to  the 
interaction between a small free-stream disturbance and a small localized variation 
of the kurface geometry has been carried out using both finite-difference and spectral 
methods. The nonlinear steady flow is of the viscous-inviscid interactive type while 
the unsteady disturbed flow is assumed to be governed by the Navier-Stokes 
equations linearized about this flow. Numerical solutions illustrate the growth or 
decay of the T-S waves generated by the interaction between the free-stream 
disturbance and the surface distortion, depending on the value of the scaled Strouhal 
number. An important result of this receptivity problem is the numerical 
determination of the amplitude of the T-S waves. 

1. Introduction 
The steady and unsteady effects of small surface-mounted obstacles on the 

boundary-layer flow over a surface have been of concern for many years. These 
effects include most notably separation and instability, often leading to transition to 
turbulence. Two main possible reasons for this transition have been suggested : either 
the surface distortion produces, in effect, a locally separated shear flow which is 
susceptible to inviscid instabilities associated with the inflectional velocity profile 
(see Smith & Bodonyi 1982, 1985, 1987 and Bodonyi, Smith & Gajjar 1983 for a 
discussion of these inviscid-type instabilities), or there is a sensitive interaction 
between the surface distortion and the basic flow, possibly with unsteadiness/ 
turbulence in the free stream, which can readily accentuate the viscous-inviscid 
growth of the Tollmien-Schlichting instabilities usually present in boundary layers 
in any case. 

The major steady-flow phenomenon observed, separation, is now well understood, 
at least in two-dimensional flows. It is generally of an interactive viscous-inviscid 
type in which the flows inside and outside the boundary layer affect each other 
significantly within a relatively short lengthscale. The question of the stability of the 
separating flow or other locally distorted steady or unsteady motions is always 
present, however, and this has started to receive increased attention, in part because 
of modern developments in boundary-layer methods. 

In  this study our concern is with the possibility of the generation of 
Tollmien-Schlichting (T-S) waves due to the interaction of small free-stream 
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disturbances and localized variations in the surface geometry. In general terms, the 
sequence of events that begins with the excitation of spatially growing T-S waves in 
a boundary layer by free-stream disturbances is known as the receptivity problem 
(Morkovin 1969). It has been studied by a number of authors over the years and the 
area has been reviewed by Reshotko (1976). More recently, Murdock (1980), 
Goldstein (1983, 1984, 1985), Goldstein, Sockol & Sanz (1983) and Goldstein, Leib & 
Cowley (1987) have theoretically investigated the role that small free-stream 
disturbances play in generating T-S waves in boundary-layer flows in a variety of 
situations. In  particular we note that Goldstein (1985) studied the effect that small 
variations in surface geometry have on scattering weak unsteady free-stream 
disturbances into T-S waves. Using the triple-deck scalings of Stewartson (1969), 
Goldstein concluded that relatively small surface variations which provoke 
correspondingly small pressure changes can produce a large coupling between the 
T-R waves and the imposed disturbance when these variations are sufficiently rapid, 
i.e. when they occur on the scale of a T-S wave. Goldstein's analysis provided a 
qualitative explanation of the Leehey & Shapiro (1979) boundary-layer receptivity 
measurements. Further comparisons with the Leehey & Shapiro experiments using 
a solution of the local Orr-Sommerfeld equation have been made by Goldstein & 
Hultgren (1987). 

However, Goldstein's analysis is limited in that he took for the steady flow the 
linearized solution of Stewartson (1970, 1971) for the interactive flow in the vicinity 
of a sharp corner in an incompressible flow. Thus Goldstein could not consider the 
effects of surface variations of sufficient size to provoke boundary-layer separation or 
even a nonlinear response in the steady flow, although his analysis does account for 
non-parallel flow effects on the stability of the flow. 

Since our interest is in the stability of non-parallel flows and especially those with 
strong local streamwise variations in surface geometry, it is appropriate to take the 
steady nonlinear viscous-inviscid interactive solutions, of the triple-deck and similar 
kinds, for the basic steady motion. This is because, as is now well known, flow 
reversal for small- or large-scale separations occurring in such flows is not necessarily 
a catastrophic event: the solution at the separation point is regular owing to the 
presence of interaction, unlike that in steady classical, i.e. non-interactive, boundary 
layers for instance. Hence a steady non-parallel basic flow with a small localized 
region of reversed flow can be described fully by the classical boundary-layer 
equations, subject to an unknown pressure which must also be computed as part of 
the solution. Additionally, we shall assume that the unsteady flow is governed by the 
linearized Navier-Stokes equations, as discussed in the following section. 

2. Problem formulation 
We wish to study the interaction between an unsteady free-stream and a small 

surface perturbation on a flat plate, such as a hump or trough, for an incompressible 
two-dimensional viscous flow. Thus following Goldstein (1985) we take the upstream 
motion to consist of a uniform flow 'with velocity U z  plus a small harmonic 
perturbation of frequency Q and constant amplitude uz 6 U z ,  so that the unsteady 
motion can be analysed as a linear perturbation of the uniform steady flow, U z ,  i.c. 
Uz(1 + u z / U z  e-i"t*). 

Consider a Cartesian coordinate system (x*, y*) with x* tangent to and y* normal 
to the flat plate with the origin taken a t  the leading edge. Further, define the 
Reynolds number Re = U z  L*/v,  where L* is the distance of the surface perturbation 
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FIQURE 1 .  Schematic of the triple-deck flow structure. 

from the leading edge of the flat plate and v is the kinematic viscosity of the fluid. 
For convenience, we introduce the small parameter e = R e d  and consider solutions 
of the Navier-Stokes equations when Re % 1. Specifically, we wish to consider the 
problem of flow over a small hump of length O(L*e3) and height O(L*e5) with a profile 
of the form 

with F = O(1),  positioned a t  a distance L* from the leading edge. The interaction 
region is shown schematically in figure 1. 

Following Goldstein (1985) we write 

a x ,  y, t )  = PO(G y) + M X ,  y, t ) ,  (2.4) 

where the steady velocity components U,, V,, and pressure Po, are normalized by U: 
and pUzz respectively and d,v",j7, the unsteady velocity and pressure terms, 
normalized by uz and puz U:, respectively. Furthermore, we define 

Substituting (2.2)-(2.4) into the Navier-Stokes equations and neglecting terms of 
0(62), we get the linearized perturbation equations 

S~,+UoB,+dUo,+V,~,+v"Uo, = -$iX+Re-l[d xz  +d YV J 7 

Sfit+ U,fiz++Vo,+ VoGy+fi&, = -$i,+Re-l[v",,+v",,], 

(2.6) 

(2.7) 

dx+f i ,  = 0, (2.8) 
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where s = QL*/UZ, (2.9) 

is the Strouhal number. 
Finally, we note that the physical interaction between the oncoming boundary 

layer, free-stream disturbance, and hump is governed by a triple-deck structure, 
centred near the surface distortion. The details of the structure as applied to this 
problem have been given by Goldstein (1985) and we, therefore, only summarize the 
relevant portions here. As is usually the case the viscous interaction problem 
essentially reduces to a study of the lower-deck equations. Thus the appropriately 
scaled variables in the lower deck for the steady flow are 

(2.10) Uo(x, y) = EU(X, Y) + O(E2), 

where 

(2.11) 

(2.12) 

(2.13) 

U ,  V ,  and P are found from the solution of the lower-deck equations: 

u,+ vy = 0, (2.14) 

UU,+VU, = -P,+Uy,, (2.15) 

subject to the boundary conditions 

U = V = O  on Y = F ( X ) ,  (2.16) 

(2.17) 

(2.18) 

where we have assumed that a simple renormalization of the variables has been 
carried out in order to set the value of the wall shear of the oncoming, undisturbed 
boundary layer to unity. Finally, the interaction condition for incompressible flow is 
given by the Cauchy Hilbert integral 

This steady problem was originally formulated by Smith (1973). 
For the unsteady flow we introduce the following lower-deck variables : 

3(x ,  y, t )  = e-it u(X, Y) + O(E) ,  

v"(x, y, t )  = c2 e-it v(X, Y )  + O(e3), 

(2.19) 

(2.20) 

(2.21) 

@(x,y,t)  = Ee-itp(X)+O(E2). (2.22) 

In these expressions we have utilized the fact that since the unsteady flow is 
governed by the linearized Navier-Stokes equations we can seek solutions which 
have a harmonic time dependence. Substituting (2.13), (2.20)-(2.22) into (2.6)-(2.8) 
yields, to leading order in E ,  

-ie2Xu+Uux+uUx+Vuy+vUy = -px+uyu,  (2.23) 

u, + vy = 0. (2.24) 

As noted in 5 1,  our interest in this paper is in the relatively high-frequency case 
where we choose 52 to be of the same order as the T-S wave frequency a t  and 
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upstream of the lower branch of the neutral stability curve. For this reason we 
require that SL = 0(sP2), i.e. the Strouhal number S = O(eP).  Thus we define a scaled 
Strouhal number So such that 

So = ezs, So = O(1) .  (2.25) 

Furthermore, in this case the Stokes-layer thickness is found to be of O(s) also and, 
therefore, it will be of O(e5) in terms of the lower-deck scalings. Hence the Stokes- 
layer thickness is the same as that of the lower deck. Upstream of the triple-deck 
region, where the mean flow changes on the scale of x, the unsteady flow in the 
boundary layer is given by the Stokes solution, which can be written in terms of the 
lower-deck scalings, as 

(2.26) u = 1 -exp (iT#;Y), 

p = ixs,. (2.27) 

The lower-deck problem is completed by solving (2.23), (2.24) using (2.25) subject 

u = v = 0  on Y = F ( X ) ,  (2.28) 

3 1  

to the no-slip condition at the wall 

matching with the main-deck solution 

u + l + a ( X ) ,  Y+co, all X ,  (2.29) 

and matching with the upstream Stokes-layer solution given by (2.26) and (2.27) for 
X+- CO. Finally, the relationship between a ( X )  and dp/dX is given by the 
interaction condition 

(2.30) 

It was found that numerical solutions of the disturbance equations were not 
obtainable for supercritical disturbances using the interaction law (2.30). Thus an 
alternative method used by Bodonyi & Duck (1988) in treating three-dimensional 
interacting flows has been employed here. In  this approach, the relationship between 
the pressure p(X) and displacement thickness -a(X) is found through a numerical 
solution of the upper-deck equations as opposed to the Hilbert integral representation 
(2.30). Specifically, it can be shown that, the appropriate boundary-value problem in 
the upper deck for the disturbance pressure is given by 

$xx +& = 07 (2.31) 

with boundary conditions 

(2.32) 

I;(X,$)+O, $-fa, all X, (2.33) 

@(X,$)+iS,X+p(X) as $ + O ,  

$ + O  as X + - C O ,  

(2.34) 

(2.35) 

hx-ik$+O as X + C O ,  (2.36) 

where we have written 

p - p ,  = s[lj(X,jj)+iS,X], j j  = y/s3. (2.37) 
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Note that (2.36) defines a radiation condition applied on the disturbance pressure a t  
the downstream boundary to simulate the outward-propagating pressure dis- 
turbances there. The wavenumber k ,  which depends on So, is found from the solution 
of the classical Orr-Sommerfeld eigenvalue problem for the Stokes-layer flow. 
Alternatively, k can be computed iteratitely from the numerical computations, as 
will be discussed below. 

The entire unsteady solution is thus known once the solution of this boundary- 
value problem has been obtained. As a special case Goldstein (1985) gives an 
analytical solution to the problem using a linearized solution of the steady-flow 
problem for a slightly cranked flap on a flat plate due to Stewartson (1970, 1971). 
Utilizing these results for U ( X ,  Y ) ,  V ( X ,  Y )  and P ( X )  Goldstein was able to solve the 
unsteady problem using a Fourier transform technique. 

In this paper we solve the corresponding problem for surface distortions such that 
the steady flow is fully nonlinear in character. However, in this case both the steady 
and the unsteady problems must be solved numerically. Before discussing the 
numerical approaches used in this study i t  is appropriate to note that the problem 
formulated above differs in a significant way from the usual hydrodynamic stability 
problem which generally involves the solution of the Orr-Sommerfeld equation. The 
Orr-Sommerfeld eigenvalue problem when applied to boundary-layer flows leads to 
the solution for ‘free’ disturbances which are, in fact, the normal modes of the 
boundary layer and they are usually referred to as the Tollmien-Schlichting waves. 
While important in their own right, the normal mode representation of a small- 
disturbance spectrum cannot be conveniently extended to finite-amplitude, i.e. 
nonlinear disturbances, nor are they useful by themselves in understanding how 
external disturbances, such as free-stream turbulence or surface roughness, ctc, feed 
energy into the boundary layer, thereby exciting spatially growing T--S waves. 

One approach to understanding both the linear and nonlinear evolution of T-S 
waves in a boundary layer is to consider an initial-value problem, using the unsteady 
triple-deck equations. Such studies have been carried out recently by Smith (1985), 
Smith & Burggraf (1985)’ and Duck (1985). 

Alternatively, one can study the nature of the coupling between an imposed free- 
stream disturbance and the growth of T-S waves in the boundary layer. This 
receptivity problem differs from the hydrodynamic stability problem both physically 
and mathematically. Physically, it is the response in the boundary layer to some 
externally imposed disturbance. Mathematically, it is no longer an eigenvalue 
problem. Instead i t  is a boundary-value problem as can be seen from (2.23)-(2.24) 
and (2.26)-(2.30), wherein the boundary layer is driven by some external forced 
oscillation with its response being a solution of the linearized disturbance equations 
having the same frequency and phase speed as the particular forcing disturbance 
being studied. The primary objective of this work is a detailed numerical study of 
this receptivity problem for a range of values of So, which represents the nature of 
the free-stream disturbance, and a representative surface distortion which we take to 
be 

F ( X )  = h ( l  + X 2 ) - ’ ,  (2.38) 

where h is an order-one factor which gives the height of the distortion relative to the 
lower-deck scalings. 
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3. Numerical method 
3.1. Steady-state solution 

First we consider the steady-flow problem defined by (2.14)-(2.19) along with (2.38). 
Numerical solutions have been found using a finite-difference procedure developed 
by Smith & Bodonyi (1985). Briefly, the governing equations are replaced by 
difference representations for @, U = @y, 7 = U,, and P with uniform steps in X ,  Y .  
The computational domain extends from X = X, (<  0) to X = X ,  (> 0) and from 
Y = 0 to Y = Y,, with starting conditions (2.17) specified, in effect, at X = XI. 

The nonlinear difference equations a t  a given streamwise location X are solved to 
within a tolerance of lop6 in absolute value by Newtonian iteration using Gaussian 
elimination and back substitution. The solution is then advanced to the next 
streamwise location and the process repeated until the entire domain is covered. 
Since the problem is interactive, multiple forward-marching sweeps are necessary 
until a tolerance of between successive values obtained for P ( X )  is satisfied for 
all 5. At this point the solution is said to have converged in the global sense. The 
diagonally dominant nature of the finite-difference form of the interaction law (2.19) 
makes this multi-sweeping process both fast and stable. Whenever flow reversal 
occurs, i.e. U < 0, windward differencing is used to represent UU, in finite-difference 
form. 

The numerical solution has been found using (2.38) for the surface shape with h = 
0.1, 1 .O and 5.0. Representative distributions of the wall shear 7 ( X ,  0), and pressure, 
P ( X ) ,  of the steady flow are given in figure 2 for h = 5.0. 

With the steady solution known, we now proceed to consider the numerical 
solution of the complex unsteady linearized boundary-layer equations (2.23) and 
(2.24). Two approaches have been used to solve the disturbance equations. In  the 
first approach, the equations were solved in the physical plane using a finite- 
difference method, while in the second a spectral numerical scheme was used. 
Reasons for considering both approaches are given later. First we describe the 
methods. 

3.2. Unsteady solution -$nite-di#erence method 
In  this approach equations (2.23) and (2.24) were replaced, after subtracting out the 
Stokes shear-wave solution, by a system of difference equations of second-order 
accuracy to be consistent with the numerical method used for the steady-flow 
problem. Since the governing equations are linear no iteration in the normal direction 
is necessary at a fixed streamwise location. A single sweep across the boundary-layer 
region was suficient to determine the solution there. Thus one complete sweep of the 
computational domain could be accomplished quickly. Multiple sweeps of the entire 
domain are still necessary to obtain the global solution, however, owing to the elliptic 
nature of the interaction law (2.30) or (2.31)-(2.36). 

Initial attempts to solve the problem were made using the pressure-displacement 
interaction law (2.30) in a form utilizing the ideas first put forward by Veldman 
(1979) and fully discussed by Smith & Bodonyi (1985). Indeed, for values of So < 1 
acceptable solutions could be found. However, as the scaled frequency So was 
increased towards its critical (i.e. neutral) value of SOCrtt cz 2.296 acceptable numerical 
solutions became increasingly more difficult to obtain. It appears that these 
difficulties are related to the use of the interaction condition (2.30). Numerically, the 
Hilbert integral is truncated to the finite range X ,  < 6 < X,, thus it is implicitly 
assumed that the tails of the integral over - co < 5 < X ,  and 6 > X ,  are negligibly 
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small. This assumption appears to be satisfactory for the upstream ‘ ta,il’, but it is 
questionable for the downstream behaviour of the integral. Furthermore, in addition 
to the difficulties associated with the finite integration domain, there is some 
question as to the convergence properties of the Cauchy-Hilbert integral itself, a t  
least when the disturbances are supercritical, owing to the exponentially growing 
form of the disturbance quantities downstream. 

To overcome these difficulties, the method developed by Bodonyi & Duck (1988) 
for solving flows with viscous-inviscid interaction has been successfully applied to 
this problem. In this method the relationship between the disturbance pressure and 
displacement thickness is found through a numerical solution of the appropriate 
upper-deck equations (2.31)-(2.36) as opposed to the Hilbert integral representation 
of the solution, (2.30). The crucial featureaf the scheme is the inherent numerical 
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coupling between the viscous boundary-layer solution and the inviscid outer-flow 
solution which is carried out simultaneously in the spirit of the scheme proposed by 
Veldman (1979). Using this approach, the difficulties associated with the convergence 
of the Hilbert integral for supercritical disturbances can be avoided and the proper 
downstream boundary condition (radiation condition, see (2.36)) can be applied to 
the disturbance pressure. 

For numerical convenience we apply the Prandtl transposition law and we also 
subtract out the Stokes solution. Thus consider the following change of variables 1 

(3.1) U(X, Y) = i-exp(i%$,Y)+u,(X, Y), 

v(X, Y) = v0(X, Y), -- dP is -- dP0 
dx O - d x  

Then the disturbance equations can be written as 

dP (U,  -ifJo) uo + Uu,, + U ,  wo + Vu,, +O- uoyy dx 

= -u,+[U,+i~,SLSdl/lexp(i~s~Y), (3.4) 

uo = uo = 0 on Y = 0, all X, (3.5) 

uo+O as X-t-co, ally,  (3.6) 

with boundary conditions 

uo - a(~)+exp( ik$ ,Y)  as Y+CO,  all X. (3.7) 

Given a guess or an update for uo, wo, p o ( X )  and $(X, 8) everywhere, (3.3)-(3.7) are 
marched forward in X, while simultaneously (2.31)-(2.36) are solved along a line of 
varying 8. This then determines the complex-valued functions u,, v,, p and 1; (and 
hence a ( X ) )  at  a given streamwise location X. Sweeping through all X stations 
constitutes one global iteration. Convergence is finally attained when a global 
convergence test on the disturbance displacement thickness - a(X) is satisfied. 

The main features of the numerical scheme are the following. Two- and three-point 
differencing in Y is used for (3.3) and (3.4) respectively, with (3.7) applied a t  Y = Y,. 
Three-point central differencing is used to approximate (2.31) in both dimensions, 
while condition (2.33) is applied a t  ij = ij,. Equation (2.32) is approximated by one- 
sided differencing in ij and a second-order scheme for X-derivatives. Finally, the 
radiation condition is applied in the following form to estimate the disturbance 
pressure a t  the downstream boundary 

The value for k is either prescribed as discussed earlier, or by estimating its value 
from the relation @$/ax)/$ from values of X reasonably far downstream, and then 
feeding this value back into the numerical computations. Numerically, the results 
indicate only slight differences in estimating k in these two ways. This is not very 
surprising since the viscous-inviscid interaction is a local phenomenon and the 
behaviour far downstream should approach that of the classical stability theory. 

Supposing we have n points in Y and m points in ij, then a t  each X station, the 
difference approximation of (3.3), (3.4) and (2.31), together with the interface 
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conditions (2.34) and (3.7) can be written conveniently in matrix form as discussed 
by Bodonyi & Duck (1988). The overall scheme is nominally second-order accurate 
in the grid spacings AX, AY and A$. The resulting matrix equation is then solved 
using standard Gaussian elimination procedures and back subst,itution. Before 
discussing the numerical results we present the spectral method for solving the 
governing equations. 

3.3. Unsteady solution - spectral methods 

The spectral scheme described in this section was first developed for the computation 
of steady two-dimensional triple-deck flows (Burggraf & Duck 1981 ; Duck 1984). 
Later i t  was used to  solve unsteady triple-deck flows by Duck (1985, 1988) and 
extended to solve three-dimensional steady and unsteady problems by Duck & 
Burggraf (1986) and Duck (1989). As explained in Duck (1985), the advantages of 
this scheme over more conventional finite-difference methods are first that it is easy 
to treat diverse interaction laws ; secondly that flow reversal is handled correctly 
without the need for any special treatment; thirdly that it can easily be extended 
to solve three-dimensional flows ; and fourthly, the so-called linearized flows 
(corresponding to h --f 0) may be solved without iteration. 

In this paper we apply the spectral method to the disturbance equations. We 
replace (2.20)-(2.22) with 

} (3.8) 
qX, y, t )  = Y ,  t )  + qE), qX, y, t )  = ~ ( x ,  Y ,  t )  + o ( E 3 ) ,  

jw, y, t )  = .P(X, t )  + O(E2), 

then write u = d,+d, where 8, is the Stokes solution and d is the unsteady 
perturbation to the Stokes solution. We introduce the new variable 7 = d, and 
transform (2.23) (with the time derivative restored) from physical space to 
wavenumber space, using (2.10)-(2.13), by taking the Fourier transform in thc X -  
direction giving 

S,?:+ikY?*-r:, = -R:-R;, (3.9) 

where 

and similarly for the other variables. For numerical reasons, it is convenient to map 
the Y-coordinate onto the 7-coordinate where Y = f (7)  so that 0 < Y < co is mapped 
onto 0 d 7 < 1 say. A uniform grid in 7 is chosen and with a suitable choice of f ( 7 )  
this corresponds to  a non-uniform grid in Y-space concentrated near Y = 0. We 
choose f(7) = 7/( 1-7).  Then (3.9) becomes 

( 3 . 1 0 ~ )  

with .ii* --f a*(k,  t )  

d* = v"* = 0 on 

R: = ik@, 8, + ~*8,,,, where 

as 7 + 1 ,  @* = Ikla*, (3.10b, c )  

7 = 0, v"* = -ik[8*fr(c)d<, (3.10d, e )  
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0, v are the steady-flow perturbations to the Blasius flow from the fully nonlinear 
steady problem, and 

.ii = [ ? * ( k ,  7 ,  t ) f ‘ ( 5 )  dt .  (3.10 h) 

Next, we combine the outer boundary condition (3.10b), the interaction law ( 3 . 1 0 ~ )  
and the momentum equation (2.6) evaluated at  Y = 0 to give the condition 

(3.11) 

To solve the problem we first evaluate 0 and v using the spectral method described 
in Burggraf & Duck (1981), suitably modified for the non-uniform Y-grid discussed 
above. We then solve (3.10) using two different spectral methods. The first is a time- 
marching scheme similar to the one used in Duck (1985), while the second method 
incorporates the time periodicity of the solution into the scheme solving the 
subsequent quasi-steady problem as in the finite-difference approach. 

3.3.1. Time-marching spectral method 

with iteration at  each time step. Since ? is a real function 
We use a Crank-Nicolson time-marching scheme evaluating R,* in physical space 

?*(k, 7,  t )  = c.c.{?*( - k ,  7 ,  t ) } ,  (3.12) 

where C.C. denotes the complex conjugate, we can truncate the doubly infinite k -  
range and solve for kmin d k d 0 and use (3.12) to find ?* for 0 < k < k,,,. 

We discretize the ( k ,  7, t)-domain into a uniformly spaced grid solving for ?* at  the 
grid points a t  times 

t = tmin+( i - l )At ,  i = 1,2  ,.... 

Equation (3.10) is approximated a t  ( k , T , t - ; A t )  by (3.21) in Duck (1985) where 
p‘ = 8, and 

R*(k, 7, t -+At)  = -RT(k, 7, t-+At)-$[R:(k, 7,  t )  +R:(k, 7, t -  A t ) ] .  (3.13) 

We also approximate (3.11) a t  time t by using trapezoidal quadrature for the 
integral and three-point backward differencing for the derivative term. At time t we 
calculate R: and use ?*(k, 7,  t -A t )  as the first guess for ?*(k, 7, t )  for the calculation 
of R:(t). For each value of k we solve the set of equations (3.13) by Gaussian 
elimination, a process which results in a tridiagonal system with a full bottom row. 
Next we calculate R: by inverting spectral variables into physical space (using the 
fast Fourier transform (FFT) method of Cooley & Tukey 1965) then calculating R,, 
followed by transformation of R,  to R: using the FFT routine again. Finally, we then 
solve the tridiagonal system for each k with the updated values of R,*. Iteration 
continues until the maximum change in the spectral pressures between iterations is 
less than some prescribed tolerance (typically lops). The scheme then steps forward 
to the next time step and repeats the iteration process. 

At t = tmin, the start-up time, we solve (3.10) evaluated a t  ( k ,  7, tmin) with the time- 
derivative term removed. This method is found to give a smoother start dominated 
less by transients than a purely impulsive start (see Duck 1988). 
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3.3.2. Time-periodic spectral method 

In this method we write 

Go = Re{61(Y)e-it}, ? = Re{?,(X, Y)e-it}, (3.14a, b)  

and let an asterisk denote the Fourier transform of some quantity; then (3.10) 
becomes 

-iso ?: +ikj((r) 7; - (y)-* ?rVV + (f’)-3jf”?l*, = - (ik0: 6,  + P * t i I y y )  

- ( 0 G l X Y  + oxy ii, + d, oyy + V G I Y Y ) * .  

(3.15) 

The numerical solution of (3.15) is similar to the solution of the steady problem. We 
then use (3.14) to find the solution a t  any time t. For this method ? ( X ,  Y) is complex 
valued and (3.12) no longer holds so we must solve the spectral equations over the 
entire k-range. Obviously there arc no problems with transients since (3.15) is a 
quasi-steady problem. Unfortunately, this approach is only suitable for subcritical 
values of So because as So increases from subcritical to supercritical values one of the 
poles of ?* migrates from the upper half-plane of k-space to the lower half-plane 
(Duck 1985). This pole should be included in the physical X > 0 solution by 
deforming the Fourier inversion contour. The time-periodic method would wrongly 
include the contribution of this pole in the X < 0 solution. In principle we could treat 
this problem for supercritical So by solving the spectral equations in complex k- 
space, but this would be a formidable numerical task. 

4. Numerical results 
In this section the results of the numerical computations using both the finite- 

difference and spectral methods will be presented. I n  the figures that follow, the 
finite-difference results are represented by solid curves and the spectral results by 
circles. 

We first consider the effect of the Strouhal number So on the interaction between 
the unsteady flow and the surface distortion. To minimize any nonlinear effects, a 
small value of the hump height, h = 0.1, for which separation does not occur in the 
mean flow, was chosen. The numerical solution was found for several values of So, 
ranging from 0.5 to 3.5. For the finite-difference method, in most cases 200 points 
were taken in the streamwise direction over the range - 10 6 X 6 10 (AX = 0.10). To 
solve the lower-deck equations, 50 points were taken across the lower-deck region 
over the range 0 < Y < 7.5. Also, an additional 50 points were used in the upper-deck 
f scaling over the range 0 6 $ < 5, to solve Laplace’s equation for the pressure in the 
upper-deck region. To test the sensitivity of the thickness of the upper-deck region, 
in some cases the upper-deck range was extended to f = 10 (100 points), but no 
significant differences in the results were noticed. For the time-marching spectral 
method a typical spectral space grid used for the calculations was 256 x 25 points 
over the range approximately - 10 d k 6 0 and 0 6 7 6 0.95 with a time step At = 
0.005, this corresponding to a physical grid with AX = 0.314 and -80.4 < X 6 80.1, 
approximately. Finally, a typical grid used for the time-periodic spectral method was 
512 x 25 over the range approximately - 10 < k < 10 and 0 < 7 < 0.95. Note that 
the fast Fourier transform used by the spectral methods required a slight, bias in the 
k-range, namely kmin < k 6 -kmin-Ak (see Burggraf & Duck 1981). Results from 
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FIGURE 3. (a )  Disturbance pressure, ( b )  disturbance wall shear, for So = 2, h = 0.1. -, finite- 
difference method; 0, spectral method. 

both spectral methods were checked using grids with double the number of points in 
the q-direction, grids with more extensive k-ranges, and grids with a finer mesh size, 
giving graphically indistinguishable results. 

Using the finite-difference method of solution, convergence of the numerical 
computations was achieved when the absolute value of the difference in the 
displacement thickness -a (X)  between two successive iterates was less than for 
all X. The number of iterations required for convergence was found to be quite 
sensitive to the value of So under consideration and also to the initial guesses taken 
for the disturbance profiles. For a subcritical disturbance of So = 0.5, less than 100 
iterations were sufficient for convergence. However, for a supercritical disturbance 
with So = 3.0 approximately 3400 iterations were necessary to obtain converged 
results. Also, by gradually increasing the value of So and using the converged 
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FIGURE 4. (a) Disturbance pressure, (0) disturbance wall shear, for So = 2.5.  h = 0.1. -, finite- 
difference method ; 0, spectral method. 

solution for the previous value of So as the initial guess, we could reduce the number 
of iterations required and also maintain a small maximum fluctuation between 
successive iterative values of the displacement thickness. 

The disturbance produced by the interaction with the hump should ultimately 
decay sufficiently far downstream of the hump if the scaled free-stream Strouhal 
number is below its critical value SOCrit zz 2.296. To illustrate this eventual damping 
of the unsteady disturbances, an extended range of - 10 < X < 40 (AX = 0.25) was 
considered. The real parts of the complex-valued disturbance pressure and wall shear 
distributions for a representative subcritical case, So = 2, are presented in figure 3 
using both the finite-difference and spectral methods. The decay in the disturbance 
amplitude for all quantities is clearly seen for X 2 10. Similarly, the disturbances 
should amplify downstream of the surface distortion if So is supercritical. The same 
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extended X-range was thus considered for a typical supercritical case, So = 2.5,  and 
figure 4 shows the amplification of the disturbances in the streamwise direction in 
this case. 

For the subcritical case the spectral method results presented here were computed 
using the time-periodic spectral method on a grid sufficiently fine and extensive to 
give grid-independent results. The supercritical results given in figure 4 were 
calculated using a linearized time-marching scheme and are shown for t = 147~. For 
both cases, excellent agreement exists between the finite-difference and spectral 
method results for the positioning of the T-S waves. There is a discrepancy of 
approximately 10% in the wave amplitudes. This difference can be reduced by 
increasing the number of grid points in the X-direction of the finite-difference 
method, as discussed below. 

Numerical experiments using the finite-difference method indicate that we can 
enhance the convergence rate in subcritical cases by extending the X-domain. The 
further downstream we place the boundary, the more the disturbance is damped near 
the boundary and this, in turn, speeds up the global convergence properties of the 
scheme. Conversely, for supercritical disturbances the further away the downstream 
boundary is placed, the larger the value of the disturbance amplitude becomes, and 
this results in a further increase in the number of iterations required for convergence. 

We next consider the nonlinear problem with a hump height of h = 1.0. In this case 
the mean flow is still attached everywhere in the flow field. The disturbance solution 
for this case has the same shape and follows the same pattern as the previous solutions 
for h = 0.1 over the entire range of Strouhal numbers considered in this study. 
However, now the amplitudes of the disturbances are increased by a factor of 
approximately 10, which indicates a linear mechanism for the amplification of the 
disturbances due to increasing the height, a t  least for this range of values of h. 

The growth rate k, and the wavelength h of the T-S waves can be calculated from 
the numerical results and compared with the values given by the analytical theory 
(Duck 1985).  The pressure 

$(X, t )  = Re el(X) ePit}, 

where $,(X) is calculated using the time-periodic spectral method. Now pl(X) = 

Ceikx + a function of X which decays algebraically as X + CO, and C is a constant. 
Therefore, 

z - k 2 ,  
djjl/dX . cl2fl1/dX2 

x i k ,  
$1 $1 

where k = k,+ik ,  and h = 2 x / k , .  This approximate method for calculating k should 
become more accurate when k is calculated from higher-order derivatives of the 
pressure. Figure 5 (a ,  b )  shows the values obtained a t  each X station for the linearized 
time-periodic spectral results for the case So = 1.0 calculated from the second 
derivative of the pressure. For comparison purposes, the finite-difference results for 
k calculated using the first-derivative approximation for the pressure are also shown. 
The two methods give substantially the same results for X > 10. I n  the region 12 < 
X < 40 the values of k, are within 3 % of the analytical value of k, x -0.522 and the 
values of k, within about 10% of k, x 0.121. The reason for the larger percentage 
error in ki compared to k,  is that Ik,( < IkJ. As is to be expected, as we move upstream 
of this region the algebraic terms become significant as the influence of the hump 
increases and the calculated values of k,. ,ki  show greater variation from their 
analytical values. 
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FIGURE 5 .  ( a )  Tollmien-Schlichting wave growth rate, (b )  Tollmien-Schlichting wavelength ; -, 
finite-difference method ; 0, spectral method : ---, analytical value. 

Figure 6 shows the results obtained for h = 1 .O, So = 3. The finite-difference results 
were calculated using an X-grid of -10 < X < 10 with AX = 0.125. The time- 
marching spectral method results here are for t = 57~ (with the negative of the results 
plotted for comparison with the finite-difference solution). By this time the time- 
periodic solution is established in the region approximately X < 13 and here there is 
excellent agreement with the finite-difference results. 

For h = 1.0 the results for a typical subcritical value of So, namely So = 1 ,  were 
calculated using both the time-marching spectral method and the time-periodic 
method. The start-up of the time-marching method generated unstable modes in the 
form of transients which were propagated downstream. The triggered unstable mode 
transients led to extremely rapid, large-amplitude oscillations in the spectral space 
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FIGURE 6. ( a )  Disturbance pressure, ( b )  disturbance wall shear, for So = 3, h = 1. -, finite- 
difference method ; 0, spectral method. 

solution and the scheme failed when they became too rapid to be correctly described 
by the grid, giving spurious upstream oscillations in the physical solution. The time- 
periodic solution established itself increasingly further downstream as time 
progressed; for example, for h = 1, So = 1,  it extended over the region X < 14 by 
time t = 2n. Using a grid of 256 x 25 over the approximate range - 10 d k d 1 0 , O  < 
7 < 0.95 with a time step of At = 0.005 and tmi, =-in it took approximately 
3000 s Cyber 205 C.P.U. time. For the same problem the time-periodic method took 8 
iterations to converge and approximately 40 s Cyber 205 C.P.U. time using a grid of 
1024 x 25 for - 10 < k < 10. It was found that the time-periodic solutions obtained 
using both spectral methods were graphically indistinguishable. 

Next, results for h = 5 ,  for which the mean flow has a small region of separated 
flow, are presented. I n  figure 2, the corresponding mean flow distributions for the 
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FIGURE 7 .  (a )  Disturbance pressure, ( b )  disturbance wall shear, for 8, = 1, h = 5.  -, finite- 
difference method ; 0, spectral method. 

pressure and wall shear are presented. We note that the solutions obtained by thc 
finite-difference method and the steady spectral method are in excellent agreement. 
There are some small oscillations in the wall shear results in the reversed-flow region, 
suggesting the need for a somewhat finer grid for the finite-difference method. This 
effect was confirmed by running the finite-difference code on a somewhat finer grid 
( -  10 < X < 10, 400 points). In  this case the oscillations noted above did indeed 
disappear. 

For this value of h, the finite-difference method was used to obtain converged 
solutions for S, = 1 and 1.2. Pressure and wall shear distributions for the unsteady 
flow over the X-domain - 10 < X < 10 are given in figure 7 for So = 1. 

Converged solutions using the finite-difference method for larger values of the 
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Strouhal number are possible in principle ; however, the computer time necessary to  
achieve them becomes prohibitive. Furthermore, the accuracy of the numerical 
solutions deteriorates as the streamwise step size, A X ,  is increased. This deterioration 
can best be seen in the wall shear results. Maintaining the same number of mesh 
points (200) and increasing AX we have been able to find three other ‘numerically 
converged’ solutions for h = 5 and So = 1.  The wall shear distributions for these 
solutions are given in figure 8. Note that for all cases the general shape of the 
solutions do not change. However, by increasing AX the magnitude of the disturbance 
amplitude was reduced while maintaining its same form and location. For the largest 
value of AX, which corresponds to an X-domain of - 10 < X < 90 (AX = 0.50), the 
numerical breakdown is clearly seen in figure 8 ( c )  even though the general shape of 
the distribution has not changed appreciably. For this same X-domain, another 
‘numerical solution ’ was obtained for half the step size by doubling the number of 
points to 400 and the results are shown in figure 8(d) .  Note that the numerical 
oscillations have disappeared and the same general shape of the curve remains. 
However, the magnitude of the amplitude is the same as that in figure 8 ( b ) .  There 
thus seems to be a trade-off between a larger X-domain to help the convergence rate 
and a smaller step size to maintain an accurate solution. 

Alternatively, results for all subcritical values of So can easily be found using the 
time-periodic spectral method. For h = 5, So = 1, the finite-difference results were 
calculated on the three grids - 10 < X < 40, AX = 0.25; - 10 < X < 20, AX = 0.15; 
and - 10 < X < 10, AX = 0.1, giving discrepancies in the amplitude of the T-S wave 
of up to 30 %, 10 % and 5 %, respectively, when compared with the time-periodic 
spectral method results which were calculated on a grid sufficiently fine and 
extensive to give grid-independent results to graphical accuracy. A comparison of 
these results for the spectral method and the finite-difference method using the third 
grid is also given in figure 7. 

For h = 5 ,  we were unable to obtain a time-periodic solution for any value of So 
using the spectral time-marching method. To investigate this problem we took the 
time-periodic solution for h = 5, So = 1 calculated using the time-periodic spectral 
method and used it as the start-up for the time-marching method. Time marching 
the solution resulted in a grid-dependent rapid growth in the spectral space solution 
for 1121 + 1,  with the growth being most rapid for the calculations with the smallest 
time step At and on grids with the most extensive k-ranges. We believe that the 
numerical problems for the time-marching spectral method for h = 5 are possibly 
caused by an inviscid Rayleigh-type instability (Smith & Bodonyi 1985; Tutty & 
Cowley 1986). 

A comparison between the numerical computations and Goldstein’s (1985) 
analytical theory for h 4 1 can also be made. The disturbance amplitude computed 
by these two methods is shown in figures 9 ( a )  and 9 ( b )  for h = 1 ,  So = 3 and h = 5, 
So = 1.2, respectively. For h = 1,  the analytical theory and the numerical results are 
in good agreement over most of the region of interest. Smaller values of h and other 
values of So, not shown here, indicate an even better agreement between the two 
approaches. Thus we can conclude that the analytical theory can be applied for 
h < 1. Conversely, for h = 5, the disturbance amplitude predicted by Goldstein’s 
theory does not agree well with that predicted by the numerical computations. The 
nonlinear base flow results in substantial differences of the receptivity problem from 
that computed by the analytical theory. 

We next consider the physical implications of the numerical results, and in 
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FIGURE 8 (a ,  0). For caption see facing page. 

particular the effect of the hump height h on the disturbance wave amplitude. We 
choose to follow the amplitude variation with h of several peaks in the disturbance 
wall shear solution. These peak values are scaled by the corresponding peak values 
of the linear results, obtained by solving the equations for h = 1, setting R,* = 0 in 
(3.13) using the time-marching spectral method. Note that the location of the peaks 
does vary slightly with h. The peak-amplitude dependence on h was studied for 
subcritical values of So, namely So = 1,2 ,  and for the supercritical value So = 3. The 
subcritical solutions were calculated using the time-periodic spectral method, and 
the supercritical solutions using the time-marching spectral method. The So = 3 
solutions were found for h < 3.5, calculations for larger values of h were affected by 
a grid-dependent rapid growth in the spectral plane solution for JkJ % 1 .  This possible 
Rayleigh instability is suppressed in the time-periodic spectral method and the finite- 
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FIGURE 8. Disturbance wall shear for So = 1, h = 5 and X varying between (a) - 10 < X < 20, 
(bj - 10 < X < 40. -, finite-difference method; 0, spectral method; ( c )  - 10 < X < 90 with 
AX = 0.50, (dj - 10 < X < 90 with AX = 0.25. 

difference method which treats the ‘steady-state ’ equations to find solutions which 
are periodic in time. Consequently, solutions can be found for 1 < h < 5. 

I n  figures 10(a) and 10(b) we show the results for So = 1 and So = 3, giving the 
scaled peak-amplitude behaviour for the wall shear +(z,O) with h for two different 
peaks; the results for So = 2, not presented here, follow a similar pattern. 

For h < 1,  the scaled disturbance amplitude depends approximately linearly on 
the hump height. Experimentally, Azin & Polyakov (1979) found a linear dependence 
of the disturbance amplitude on h, for the interaction of upstream-propagating 
sound waves with thin mylar strips fixed on a flat plate near the lower branch of the 
neutral stability curve. Por larger values of h, our results show an increasingly 
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FIOUHE 9. Comparison of disturbance displacement distribution for (a) h = 1,  S, = 3, and ( b )  
h = 5 ,  So = 1.2. -, finite-difference method; ----. analytical theory. 

nonlinear enhancing effect on the disturbance amplitude. These results are confirmed 
by the finite-difference results for S,  = 1. For example, for h = 3 the disturbance 
amplitude is approximately twice that of the linear results for the same h. The results 
for the subcritical So calculated using the time-periodic spectral method and finite- 
difference method show that this increasingly rapid enhancement of the ‘rcceptivity ’ 
continues for h = 4 and 5 .  The results for h = 4 , 5  are approximately three and six 
times, respectively, the corresponding linear results for the same h. 

In conclusion we find a linear dependence of the disturbance amplitude on the 
hump height for sufficiently small values of h. For moderate h(l  < h < 3) we find an 
enhancement of the receptivity by the nonlinear effect of hump height. For large h 
where local flow separation can occur in the steady flow, we find a possible short- 
wavelength instability in our time-marching calculations and a rapidly increasing 
enhanced receptivity in our ‘steady-state ’ calculations. 
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FIGURE 10. (a) Disturbance amplitude variation versus h for So = 1, normalized by the linearized 
results for h = 1, So = 1.  -, minimum near X = 18.5; ---, peak near X = 13; ---, linear 
result. ( 6 )  Disturbance amplitude variation versus h for So = 3, normalized by the linearized results 
for h = 1 ,  So = 3. -, minimum near X = 9; ---, peak near X = 7 ;  ---, linear result. 
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